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Bispectral analysis was used to study the nonlinear interaction of compressional waves in a two-dimensional
strongly coupled dusty plasma. A monolayer of highly charged polymer microspheres was suspended in a
plasma sheath. The microspheres interacted with a Yukawa potential and formed a triangular lattice. Two
sinusoidal pump waves with different frequencies were excited in the lattice by pushing the particles with
modulated Ar+ laser beams. Coherent nonlinear interaction of the pump waves was shown to be the mechanism
of generating waves at the sum, difference, and other combination frequencies. However, coherent nonlinear
interaction was ruled out for certain combination frequencies, in particular, for the difference frequency below
an excitation-power threshold, as predicted by theory.
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I. INTRODUCTION

Bispectral analysis is a powerful tool to study nonlinear
phenomena �1�. In this method, a correlation is calculated
between fluctuations at different frequencies in Fourier spec-
tra of the waves studied. If the correlation among a triplet of
waves at frequencies F1, F2, and F1+F2 is strong, this result
indicates phase coupling between these waves. In this case,
the wave at F1+F2 is a result of coherent nonlinear interac-
tion of waves at F1 and F2. If there is no correlation in the
triplet F1, F2, and F1+F2, this rules out the coherent nonlin-
ear interaction of waves at F1 and F2.

In this paper, we use bispectral analysis to clarify ques-
tions that remained unresolved in Ref. �2�. In that paper, an
experiment was reported where nonlinear three-wave inter-
action of compressional waves was observed in a two-
dimensional �2D� dusty plasma.

A dusty plasma is a suspension of micron-sized particles
in a plasma. The particles are highly charged, and due to
mutual repulsion in combination with the natural confine-
ment provided by the plasma’s radial electric field, they ar-
range themselves in a structure, called a plasma crystal, with
crystalline or liquidlike order. In the presence of gravity, par-
ticles can settle in a 2D monolayer, whereas the plasma’s
electrons and ions fill a three-dimensional �3D� volume. The
particles can be imaged directly, and their positions and ve-
locities calculated, which allows studying the lattice micro-
scopically.

Sound waves, or phonons, are well-studied in the linear or
low-amplitude limit. The literature, both theoretical and ex-
perimental, for 2D dusty plasmas is reviewed in Ref. �3� and
references cited therein.

The properties of nonlinear waves in dusty plasmas have
also been studied, but not as completely as for linear waves.
It was shown theoretically that nonlinear pulses can take the
form of solitons in weakly �4� and strongly coupled �5–7�
dusty plasmas, although frictional gas damping can suppress
soliton formation �6,7�. In experiments with large ampli-

tudes, nonlinear pulses �5,8� and harmonic generation �2,9�
were observed in 2D lattices. Harmonic generation was ex-
plained theoretically in Refs. �9,10�.

II. REVIEW OF EXPERIMENT

In this paper we will present further analysis, using dif-
ferent methods, of the experiment of Nosenko et al. �2�,
where nonlinear mixing of compressional waves was ob-
served in a 2D dusty plasma crystal. Below, we will briefly
review the experimental procedure and main results of Ref.
�2�.

A monolayer of highly charged polymer microspheres
was suspended in a plasma sheath, Fig. 1. The particle sus-
pension had a diameter of about 60 mm. The particles had a
diameter of 8.09±0.18 �m �11� and a mass density
1.514 g/cm3. To achieve a low damping rate, Ar gas was
used at a pressure of 5 mTorr, so that the gas drag, which is
accurately modeled �11� by the Epstein expression, was only
�d=0.87 s−1. The plasma was sustained by a 13.56 MHz rf
voltage with a peak-to-peak amplitude of 168 V and a self-
bias of −115 V.

The particles in the suspension arranged themselves in a
triangular lattice, as shown in the image in Fig. 1�a�. The
interparticle spacing was a=675±14 �m, as identified by
the first peak in the pair correlation function g�r�. The lattice
was in an ordered state; g�r� had many peaks, and it had
translational order length of 16a in an undisturbed lattice,
although this diminished to 4a when large-amplitude waves
were excited. A pulse technique �12� making use of a theo-
retical wave dispersion relation was used to measure the
particle charge Q=−9400±900e and screening length
�D=0.73±0.1 mm at the particles’ height.

The particles were imaged through the top window by a
video camera, and they were illuminated by a horizontal
He-Ne laser sheet. Movies of 68.3−136.7 s duration were
digitized using a digital VCR at 29.97 frames per second.
The 24�18 mm field of view included 1000–1100 particles,
Fig. 1�a�. Particle coordinates and velocities were then cal-
culated in each frame using the moment method �13�. The
x-y coordinate system in the plane of particle suspension has*Electronic address: vladimir-nosenko@uiowa.edu
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its x axis in the direction of the laser beam, as shown in Fig.
1�b�, so that waves propagated in the ±x directions.

A laser-manipulation method was used to excite two sinu-
soidal compressional pump waves with different frequencies,
f1=0.7 Hz and f2=1.7 Hz, and parallel wave fronts in the
plasma crystal, Fig. 1. Particles were pushed by the radiation
pressure force, which is proportional to an incident laser in-
tensity �11�. Measurements were repeated with three differ-
ent laser powers to vary the pump strength, and also with no
laser power. We will report the laser power as measured in-
side the vacuum chamber. Our highest power was 3.41 W.
Note that this power was distributed over a narrow rectangu-
lar stripe that traversed the particle suspension. To under-
stand how large the pump power was, the most physically
significant parameter is the peak velocity of the particles in
the stripe where the laser struck. This peak velocity was
0.72 mm/s, corresponding to 3.3% of the sound speed for
compressional waves, at our highest laser power of 3.41 W.

The results of this experiment as reported in Ref. �2� were
observations of the waves propagating in the lattice at the
sum, difference, and other combination frequencies, as well
as harmonics of the pump waves. The waves at the sum
frequencies f1+ f2 and 2f1+ f2 were found to be generated
only above an excitation-power threshold. This threshold

was attributed to frictional damping, as predicted by nonlin-
ear wave theory �2�.

III. ANALYSIS METHOD

In the present paper, we use a different method, bispectral
analysis, to clarify the mechanism of generating waves at
different combination frequencies in the experiment of Ref.
�2�. We performed bispectral analysis of the particle velocity
using the following procedure. The x component of the par-
ticle velocity was spatially averaged within 40 rectangular
bins elongated along the y axis. The fast Fourier transform
vx�f� of the averaged particle velocity vx�t� was then com-
puted for each of the 40 bins. Then we calculated the maps
of the squared bicoherence,

�2�F1,F2� =
��vx�F1�vx�F2�vx

*�F1 + F2���2

��vx�F1�vx�F2��2���vx�F1 + F2��2�
, �1�

where �¯� denotes the ensemble average and vx
* is the com-

plex conjugate of vx. Ensemble averaging was performed in
nine data bins that were located 6.5–11.1 mm away from the
excitation region. The amplitudes of waves at combination
frequencies did not change significantly between these data
bins. In addition, the 4096-frame time sequence of vx�t� in
each of these bins was divided into four 1024-frame subse-
quences. Thus we obtained n=36 ensembles, each 1024
frames long, to calculate the ensemble average. The length of
each ensemble was enough to calculate vx�f� with sufficient
frequency resolution.

The aim of using bispectral analysis is to determine
whether there is significant coupling between three waves, as
indicated by a strong correlation. It is customary to charac-
terize the coupling as strong if �2 is nearly unity and absent
if it is near zero �14�. Coupling that is not strong can never-
theless be deemed statistically significant at the 95% confi-
dence level if �2�3/n, which for our case is
�2�0.083�15�. We will test three different experimental
cases, corresponding to three different pump power levels,
and we will find that strong coupling, with �2 near unity,
occurs in two of these cases, for the experiment of Ref. �2�.

IV. RESULTS

A. Compressional waves

Going beyond the power spectra reported in Ref. �2�, we
also present two other kinds of maps. These are maps of the
bicoherence �2�F1 ,F2� and maps of the wave energy in
�-k space. The maps of �2 are presented as functions of two
independent variables, F1 and F2; these should not be con-
fused with f1 and f2, which represent the two pump frequen-
cies in the experiment. The bicoherence maps indicate
whether a coherent nonlinear coupling occurs amongst three
oscillations. Whether these oscillations correspond to a
propagating wave or some other oscillation such as a slosh-
ing mode is revealed by the energy maps in �-k space. The
maps of bicoherence and of energy in �-k space were not
previously reported in Ref. �2� for the same experiment.

FIG. 1. Experimental apparatus. �a� Particles arranged in a tri-
angular 2D lattice. Atop this image is a sketch showing where the
radiation pressure force from two modulated Ar+ laser sheets
pushes particles, exciting sinusoidal compressional pump waves.
�b� The particles are polymer microspheres, suspended as a mono-
layer above the lower electrode in a capacitively coupled rf plasma.
All our analysis is based on images recorded by the top-view
camera.
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At our highest amplitude for the pump waves, with a laser
power of 3.41 W, the power spectrum of particle velocity
has peaks corresponding to the pump waves, their harmon-
ics, and waves at various combination frequencies, as shown
in Fig. 2�a�. This figure is similar to Fig. 2a of Ref. �2�,
except that in the present paper the power spectrum was
calculated in the same region of the plasma crystal located
6.5–11.1 mm away from the excitation region that was used
to calculate bicoherence. Next, we examine our results for

the two other kinds of maps, bicoherence and wave energy in
�-k space.

The map of squared bicoherence �2 in Fig. 2�b� shows
that the waves at combination frequencies are a result of
coherent nonlinear interaction of the pump waves, thus sup-
porting a similar conclusion made in Ref. �2�. The black dots
in this map indicate the pairs of frequencies F1, F2, where
the squared bicoherence �2�F1 ,F2� is nearly unity, indicating
strong coupling. For any point on the map where �2 is near
unity, we conclude that the corresponding frequencies F1, F2,
and F1+F2 are not only harmonically related, but phase
coupled as well, which is a signature of coherent nonlinear
interaction between the waves at F1 and F2. Note that the
map is symmetric relative to the line F1=F2, since
�2�F1 ,F2�=�2�F2 ,F1�.

We identify peaks corresponding to at least 12 nonlinear
interactions at combination frequencies in Fig. 2�b�. We list
these in Table I. We also list peaks that are ambiguous be-
cause we are unable to definitively identify their generation
mechanism. Among the 12 peaks that we can explain are the
generation of combination frequencies f1+ f2, f2− f1, 2f1
+ f2, and 2f2− f1. For example, for the point �0.7 Hz,1.7 Hz�
on the map corresponding to our two pump frequencies, the
value of the squared bicoherence is near unity, �2�f1 , f2�
=0.954. This peak shows that a third wave exists with a
frequency f1+ f2=2.4 Hz, and that the phase of this wave
equals �1+�2, where �1 and �2 are the phases of the waves
at f1 and f2. For this example, one can conclude that the
generation mechanism for the sum-frequency wave is coher-
ent nonlinear interaction of the pump waves. As another ex-
ample, for the point �1 Hz,0.7 Hz� the squared bicoherence
is also near unity. This means that the three waves with fre-
quencies f2− f1=1 Hz, f1, and f2 are phase coupled. We in-
terpret this finding as evidence that the difference-frequency
wave is generated by coherent nonlinear interaction of the
pump waves, at this high level of excitation laser power.

We will now compare the map of squared bicoherence �2

in Fig. 2�b� and the power spectrum �vx�f��2 for particle mo-
tion in Fig. 2�a�. Each peak at a combination frequency in the
power spectrum in Fig. 2�a� has one or more corresponding
peaks in the bicoherence map in Fig. 2�b�. The latter peaks
show different ways the wave at that combination frequency
was generated. There is one exception, though. For the peak
at 2f1+2f2=4.8 Hz in Fig. 2�a�, there is no corresponding
peak in Fig. 2�b�. We will discuss the significance of this
finding for the wave at 4.8 Hz later in this paper.

At our medium amplitude for the pump waves, with a
laser power of 1.19 W, the power spectrum of particle ve-
locity has fewer peaks, in Fig. 3�a�. Some combination-
frequency peaks have disappeared at this lower amplitude, as
compared to the higher amplitude case of Fig. 2. This occurs
because the pump amplitude became lower than the thresh-
old value, as explained by the theory of Ref. �2�. Remaining
peaks at the combination frequencies of f2− f1, f1+ f2, and
2f1+ f2 are still a result of coherent nonlinear interaction of
the pump waves, as indicated by corresponding peaks in the
map of bicoherence in Fig. 3�b�, where �2 is near unity. For
example, at the point corresponding to our two pump fre-
quencies, the squared bicoherence is �2�f1 , f2�=0.957.

FIG. 2. �a� Power spectrum �vx�f��2 and �b� map of the squared
bicoherence �2�F1 ,F2� of the particle velocity. Note that f , F1, and
F2 denote independent variables, whereas f1=0.7 Hz and
f2=1.7 Hz are the pump frequencies. Data shown here are for a
high excitation laser power of 3.41 W. In �b�, a dark color indicates
a high bicoherence, �2�F1 ,F2��1; when this occurs, the waves at
frequencies F1, F2, and F1+F2 are not only harmonically related,
but phase coupled as well, which is a signature of coherent nonlin-
ear interaction between the waves at F1 and F2. Interpretation of all
peaks labeled in �b� is presented in Table I. Note that the map of
bicoherence is symmetric relative to the line F1=F2, since
�2�F1 ,F2�=�2�F2 ,F1�.
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At our lowest amplitude of the pump waves, with a laser
power of 0.11 W, the power spectrum of particle velocity in
Fig. 4�a� has, besides the pump frequencies, two peaks at the
combination frequencies f2− f1=1 Hz and 2f1+2f2=4.8 Hz,
and lower peaks at frequencies that seem to be unrelated to
the pump frequencies. However, there are no peaks with �2

near unity in the corresponding map of bicoherence in Fig.
4�b�. We summarize these observations in Table II. For ex-
ample, at the point corresponding to our two pump frequen-
cies, the squared bicoherence is �2�f1 , f2�=0.022. This
means that there is no coherent nonlinear interaction of the
pump waves when they have low amplitude, in agreement
with the theory of Ref. �2�. The origin of the peaks at 1 Hz
and 4.8 Hz in Fig. 4�a� thus remains unclear. We will discuss
the waves at 1 Hz and 4.8 Hz later in this paper.

One of the chief results of this paper is that using bispec-
tral analysis verifies the theoretical prediction of Ref. �2� of
an excitation-power threshold for the generation of a
difference-frequency wave. The peak at the difference fre-
quency f2− f1=1 Hz is present in the power spectra of the
particle velocity at all values of laser power, as shown in
Figs. 2�a�, 3�a�, and 4�a�. However, the corresponding
peaks in the respective maps of bicoherence are only present
at the two higher values of laser power, Figs. 2�b� and 3�b�.
Compare, for example, Figs. 3 and 4. The peak at 1 Hz is
present in the power spectra in Figs. 3�a� and 4�a�, with
similar amplitudes, yet the corresponding peak in the map
of bicoherence is only present in Fig. 3�b�. In general, the
peak at 1 Hz is present in the maps of bicoherence at laser
powers of 1.19 W and higher, while it is missing at laser
powers of 0.61 W and below. This means that the wave

at f2− f1=1 Hz is phase coupled to the pump waves for
Plaser	1.19 W, but it is not phase coupled to the pump
waves for Plaser
0.61 W. Hence the wave at 1 Hz can be
attributed to coherent nonlinear mixing of the pump waves
only at higher values of laser power Plaser	1.19 W, in
agreement with the prediction of theory of Ref. �2� that there
is an excitation-power threshold for generation of
combination-frequency waves.

Similarly, bispectral analysis helps to reveal that the peak
at 4.8 Hz in the power spectra of the particle velocity is not
a result of coherent nonlinear mixing of the pump waves
regardless of their amplitude, even though this peak happens
to be at the combination frequency 2f1+2f2. Indeed, the
phase of the wave at 4.8 Hz is not coupled to the phases of
the pump waves, as evidenced by the absence of the corre-
sponding peaks in the maps of bicoherence in Figs. 2�b� and
4�b�.

B. Other oscillations

While bispectral analysis can tell us that the waves at
f2− f1=1.0 Hz �below the excitation-power threshold� and
2f1+2f2=4.8 Hz are not a result of coherent nonlinear mix-
ing of the pump waves, it cannot tell us what they are. In
particular, it cannot tell us whether the observed oscillations
are propagating waves. For that purpose, we need an addi-
tional method, described next.

A more complete identification of observed oscillations
can be obtained from the analysis of the map of wave energy
in �-k space shown in Fig. 5. The wave energy is mostly
concentrated in distinct peaks that correspond to the pump

TABLE I. Frequencies and physical significance of the peaks in bicoherence in Figs. 2�b� and 3�b�. The
two pump frequencies are f1=0.7 Hz and f2=1.7 Hz.

Peak F1 �Hz� F2 �Hz� F1+F2 �Hz� combination frequency

Interpretation: coherent nonlinear generation of combination frequencies

a 0.7 0.7 1.4 second harmonic of f1

b 1.0 0.7 1.7 difference frequency f2− f1=1 Hz

c 1.4 0.7 2.1 third harmonic of f1

d 1.7 0.7 2.4 sum frequency f1+ f2

e 2.1 0.7 2.8 fourth harmonic of f1

g 2.4 0.7 3.1 sum frequency 2f1+ f2

h 2.7 0.7 3.4 difference frequency 2f2− f1=2.7 Hz

i 3.4 0.7 4.1 sum frequency f1+2f2

o 1.4 1.4 2.8 fourth harmonic of f1

p 1.7 1.4 3.1 sum frequency 2f1+ f2

r 1.7 1.7 3.4 second harmonic of f2

s 2.4 1.7 4.1 sum frequency f1+2f2

Interpretation is ambiguous

j 1.4 1 2.4

k 1.7 1 2.7

l 2.1 1 3.1

m 2.4 1 3.4

n 3.1 1 4.1

q 2.7 1.4 4.1
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waves, their harmonics, and waves at combination frequen-
cies. These peaks are superimposed on weaker curved stripes
representing the dispersion relation of spontaneously excited
compressional waves, as observed in the experiment in Ref.
�16�. However, some peaks in Fig. 5 do not lie on the dis-
persion relation. Most notably, the oscillations at 4.8 Hz and
6.3 Hz have a wave number k�0. These are therefore close
to a sloshing mode, i.e., a motion of all particles together as
a rigid body in the confining potential provided by the plas-
ma’s radial electric field �17�. Such an oscillation does not
satisfy the compressional wave’s dispersion relation. This
observation supports the conclusion made earlier that the os-
cillation at 4.8 Hz is not generated by coherent nonlinear
mixing of the pump waves. Therefore, it is only a coinci-
dence that this oscillation happens to be at the combination
frequency 2f1+2f2=4.8 Hz. It may be excited by a sponta-
neous motion of a lattice defect or an energetic particle be-
neath the monolayer �18�. It may also be an artifact due to

camera vibration or noise in the camera and electronics. This
oscillation at 4.8 Hz might indeed be intermittent, because it
is absent for the data series presented in Fig. 3.

Similarly, the oscillation at 1 Hz has a wave number
k�0 at our lowest amplitude, which is below the excitation-

FIG. 3. �a� Power spectrum �vx�f��2 and �b� map of the squared
bicoherence �2�F1 ,F2� of the particle velocity for the medium ex-
citation laser power of 1.19 W. Interpretation of all peaks labeled in
�b� is presented in Table I.

FIG. 4. �a� Power spectrum �vx�f��2 and �b� map of the squared
bicoherence �2�F1 ,F2� of the particle velocity for the low excitation
laser power of 0.11 W. Although the power spectrum has peaks at
combination frequencies f2− f1=1 Hz and 2f1+2f2=4.8 Hz, the bi-
coherence has no peaks that would indicate strong coupling, i.e.,
�2�1 for all frequencies. This rules out coherent nonlinear interac-
tion of the pump waves at this low amplitude. Observation of com-
bination frequencies present in power spectra but absent in bicoher-
ence maps is summarized in Table II.

TABLE II. Combination frequencies with peaks in power spec-
tra but absent in bicoherence maps.

peak combination frequency comments

4.8 Hz 2f1+2f2 always absent

1 Hz f2− f1 absent at low pump amplitude
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power threshold, Fig. 5�b�. This means that below the
excitation-power threshold, this oscillation, as in the case of
4.8 Hz, is a long-wavelength motion of particles probably
caused by oscillating defects or particles beneath the mono-
layer. On the other hand, above the excitation-power thresh-
old, the wave at 1 Hz has a finite wave number k�0, that
lies on the dispersion relation of compressional waves, as
shown in Fig. 5�a�. This supports the conclusion that the
difference-frequency wave is generated by coherent nonlin-

ear mixing of the pump waves, above the excitation-power
threshold.

Finally, we note some faint unexplained features in the
map of bicoherence for the lowest pump amplitude, Fig.
4�b�. Even though there is no coherent nonlinear interaction
of the pump waves when they have low amplitudes, the map
of bicoherence in Fig. 4�b� has peaks at random frequencies
in the range F1,2
1 Hz. These peaks are weak, with a
squared bicoherence of only �2
0.4. The frequencies of
these random peaks, however, are unrelated to the pump fre-
quencies. Similar peaks with �2
0.3 are present even with-
out any external excitation �zero pump amplitude�. These
bicoherence levels indicate that the coupling is not strong,
although they might be statistically significant. The latter ob-
servation might be an indication of phase coupling between
spontaneously excited low-frequency long-wavelength
waves in a 2D plasma crystal. On the other hand, these fea-
tures at low amplitude might also be merely artifacts of the
random errors in our velocity measurements.

V. USES OF BISPECTRAL ANALYSIS BEYOND
BICOHERENCE

Bispectral analysis can provide more information on non-
linear wave interaction than is illustrated in this paper.
Rather than use the bicoherence �2, one could use the bispec-
trum

B�F1,F2� = �vx�F1�vx�F2�vx
*�F1 + F2�� , �2�

where we have used the same notations as in Eq. �1�. It can
be shown that the imaginary part of the bispectrum carries
information on the rate of power transfer between different
modes. This method will be described in detail elsewhere.

VI. SUMMARY

We showed how bispectral analysis can be used to study
nonlinear interaction of waves in an externally driven sys-
tem. In bispectral analysis, the value of bicoherence �2 be-
tween different modes measures the strength of coupling be-
tween these modes. Bispectral analysis provides a deeper
insight into the nature of the nonlinear wave generation
mechanism than is possible using the usual power spectrum,
because, unlike a power spectrum, bicoherence carries infor-
mation on the phase relations between modes. Analysis of
bicoherence can therefore help to distinguish between coher-
ent nonlinear generation of combination-frequency waves
and other generation mechanisms. In our experiment with a
plasma crystal, where two pump waves at different frequen-
cies were externally excited, we showed how analysis of
bicoherence is useful in two ways. First, it confirms that a
certain combination frequency is indeed a result of coherent
nonlinear interaction of pump waves, if we observe �2�1
for that combination frequency. Second, it rules out coherent
nonlinear interaction, if we observe �2�1. In particular, we
showed that the difference-frequency wave was generated by
coherent nonlinear interaction of pump waves above an
excitation-power threshold, and by some other mechanism

FIG. 5. Map of wave energy in �-k space for �a� high and �b�
low excitation laser power. The levels of laser power in �a� and �b�
correspond to Figs. 2 and 4, respectively. The wave energy is
mostly concentrated in distinct peaks that correspond to the pump
waves, their harmonics, and waves at combination frequencies.
These peaks are superimposed on weaker stripes representing the
dispersion relation of spontaneously excited compressional waves
�16�. The oscillation at 4.8 Hz has a wave number k�0 and does
not satisfy the dispersion relation. This oscillation is not generated
by coherent nonlinear interaction of the pump waves, even though it
happens to be at the frequency 2f1+2f2=4.8 Hz.
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below the threshold. This supports the theoretical prediction
of Ref. �2� about the existence of an excitation-power thresh-
old, for the difference-frequency wave. Finally, further uses
of bispectral analysis beyond bicoherence were suggested.
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